US Stocks
Guide for accessing US stock market data.
Daily Historical Data
import finvista as fv
# Get Apple daily data
df = fv.get_us_stock_daily("AAPL", start_date="2024-01-01")
Parameters
| Parameter |
Type |
Required |
Description |
symbol |
str |
Yes |
Stock ticker (e.g., "AAPL") |
start_date |
str |
No |
Start date (YYYY-MM-DD) |
end_date |
str |
No |
End date (YYYY-MM-DD) |
Return Columns
| Column |
Description |
date |
Trading date |
open |
Opening price |
high |
Highest price |
low |
Lowest price |
close |
Closing price (adjusted) |
volume |
Trading volume |
Real-time Quotes
# Single stock
df = fv.get_us_stock_quote("AAPL")
# Multiple stocks
df = fv.get_us_stock_quote(["AAPL", "MSFT", "GOOGL", "AMZN", "META"])
info = fv.get_us_stock_info("AAPL")
# Returns dict with:
# - name: Company name
# - sector: Industry sector
# - industry: Specific industry
# - market_cap: Market capitalization
# - pe_ratio: P/E ratio
# - description: Company description
Search Stocks
df = fv.search_us_stock("Apple")
Data Source
| Source |
Data Types |
| Yahoo Finance |
Daily, Quote, Info, Search |
Examples
Tech Giants Comparison
tickers = ["AAPL", "MSFT", "GOOGL", "AMZN", "META"]
df = fv.get_us_stock_quote(tickers)
print(df[['symbol', 'name', 'price', 'change_pct', 'market_cap']])
Download Historical Data
df = fv.get_us_stock_daily("AAPL", start_date="2020-01-01")
df.to_csv("AAPL_daily.csv", index=False)
Portfolio Analysis
import pandas as pd
portfolio = {
"AAPL": 0.3, # 30%
"MSFT": 0.25, # 25%
"GOOGL": 0.25, # 25%
"AMZN": 0.2 # 20%
}
prices = {}
for ticker in portfolio:
df = fv.get_us_stock_daily(ticker, start_date="2024-01-01")
prices[ticker] = df.set_index('date')['close']
price_df = pd.DataFrame(prices)
returns = price_df.pct_change()
# Portfolio weighted return
portfolio_return = sum(
returns[ticker] * weight
for ticker, weight in portfolio.items()
)
Notes
- US market data may have 15-minute delay for real-time quotes
- Historical data is adjusted for splits and dividends
- Yahoo Finance is the primary data source